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Signaling networks have evolved to transduce external and internal information into critical
cellular decisions such as growth, differentiation, and apoptosis. These networks form highly
interconnected systems within cells due to network crosstalk, where an enzyme from one
canonical pathway acts on targets from other pathways. It is currently unclear what types of
effects these interconnections can have on the response of networks to incoming signals. In this
work, we employ mathematical models to characterize the influence that multiple substrates
have on one another. These models build off of the atomistic motif of a kinase/phosphatase
pair acting on a single substrate. We find that the ultrasensitive, switch-like response these
motifs can exhibit becomes transitive: if one substrate saturates the enzymes and responds
ultrasensitively, then all substrates will do so regardless of their degree of saturation. We also
demonstrate that the phosphatases themselves can induce crosstalk even when the kinases
are independent. These findings have strong implications for how we understand and classify
crosstalk, as well as for the rational development of kinase inhibitors aimed at pharmaceutically
modulating network behavior.

Signal propagation through a network of inter-
acting proteins is central to a cell’s ability to pro-
cess and respond to stimuli. In most cases, these
interactions involve an enzyme (e.g., a kinase) that
covalently modifies a substrate and changes its func-
tionality (i.e., activates/deactivates it as an enzyme,
or causes translocation to a different compartment).
To regulate the signal, another enzyme (e.g., a phos-
phatase) reverses the modification, restoring the
original functionality of the substrate in question.
The net activity of these enzymes alters the func-
tional state of the proteins in the network in response
to inputs, and the overall state of the network ulti-
mately determines the cellular response.

Intracellular signaling networks are extremely
complex in metazoans, which makes it difficult to
understand their behavior [1, 2]. A major source of
this complexity is network crosstalk, i.e., the shar-
ing of input signals between multiple canonical path-
ways [3–7]. For example, kinases can often transmit
signals to a large number of different targets: Akt
can act on at least 18 substrates, and the receptor
tyrosine kinases in the EGF/ErbB family can inter-
act with <20 substrates [8, 9]. Because eukaryotic
genomes contain fewer distinct phosphatases than
distinct kinases, phosphatases are generally consid-
ered more promiscuous, and even with adaptor pro-
teins targeting their activity, they often act on multi-
ple substrates [10]. Although it is clear that crosstalk

is widespread in mammalian signaling networks, we
currently do not have a clear conceptual picture of
how this highly interconnected architecture might
influence the response of a network to incoming sig-
nals.

In this work, we seek to understand how the
competition and promiscuity induced by crosstalk
ultimately influence network behavior. In classic
crosstalk, a kinase is shared between two pathways
and can transfer signals from one pathway to an-
other [3,5,7,11]; for instance, mitogen-activated pro-
tein kinase (MAPK) networks often use the same
enzymes in multiple cascades [12]. Most previous
computational studies on this subject have focused
on characterizing the spatial or temporal mecha-
nisms for the insulation of MAPK signaling cas-
cades despite the potential for crosstalk [13–15]. It
has been demonstrated, however, that competition
among targets of the same kinase can have profound
effects on substrate phosphorylation [16]. Here, we
extend these previous findings to characterize in de-
tail how crosstalk can actively couple the response of
multiple proteins to incoming signals. We developed
models that consider a set of general motifs, with
the goal of understanding how features such as sub-
strate saturation and phosphatase architecture can
influence substrate response.

Our models build off a simple futile cycle in
which one enzyme modifies a single substrate and
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another enzyme removes the modification, which we
represent as a kinase and phosphatase pair interact-
ing with a target protein (see Fig. 1A). As first shown
by Goldbeter and Koshland [17] over 30 years ago,
the fraction of modified substrate for this cycle can
be expressed as a function of three parameters:

KK =
Km,K

[S]0
, KP =

Km,P

[S]0
, r =

Vmax,K

Vmax,P
(1)

where [S]0 is the total amount of substrate, Km,K

and Km,P are the Michaelis constants for the two
enzymes, KK and KP represent the inverse of the
degree of saturation of the enzymes, and r is the
ratio of their maximum velocities. Detailed defini-
tions of these constants in terms of the underlying
rates of the enzymatic reactions can be found in the
context of Eq. 2 below. One can easily solve the
underlying system of differential equations (see Fig.
1A) at steady state, providing a relationship between
overall substrate phosphorylation and the parame-
ters listed in Eq. 1 (see Eq. 3 below, with αK,1 = 1,
αP,1 = 1). Because protein levels tend to change
slowly [18], we expect that saturation (and thus KK

and KP ) will remain constant on short timescales
during the response to signal. On the other hand,
r changes with the concentration of active kinase
and phosphatase. Incoming signals generally mod-
ulate active K or P concentration, thus making r
the dominant response parameter. When the sub-
strate does not saturate the enzymes, phosphoryla-
tion of the substrate increases hyperbolically with
r. However, when the substrate saturates both en-
zymes, the loop displays a switch-like behavior in r,
referred to as 0th order ultrasensitivity (Fig. 1B). In
this case, at values of r < 1 the fraction of phospho-
rylated substrate is very low, and at r > 1 the system
switches to a highly phosphorylated state [17]. The
ultrasensitive response of a substrate at saturating
concentrations has been observed experimentally in
a number of systems [16,19–23].

We expanded this model to include competing
substrates at either or both enzymes to character-
ize the influence of multiple targets on signaling
(Fig. 2A-C ). All three of the motifs we consider are
found in well-known signaling systems, such as the
Fus3/Cdk1 network in yeast and other eukaryotes
(Fig. 2D). We found that shared signaling enzymes
can couple the responses of different substrates. For

Figure 1: The Goldbeter-Koshland loop. (A) A pair
of enzymes (say, a kinase K and a phosphatase P ) acts
on a single substrate. The associated equations show the
change in S∗ concentration as the difference between the
production of S∗ by the kinase (in red) and the produc-
tion of S by the phosphatase (in blue). Here we assume
that the concentration of free S and S∗ is far greater than
the concentrations of bound S in either form, which is
necessary to obtain the standard Michaelis-Menten forms
for the enzymatic reaction velocities [17]. (B) The frac-
tion of phosphorylated S (z axis) is a function of r and
[S]0. The total concentration of [S] is normalized by its
Km (which is identical for both the kinase and phos-
phatase) and is plotted on a log scale.

instance, when there is more than one substrate of
the same kinase and phosphatase (see Fig. 2A), if
one substrate is at sufficient concentration to elicit
an ultrasensitive response, then all substrates that
share the pair enzymes in the cycle will exhibit ul-
trasensitivity without necessarily saturating the en-
zyme themselves. We have shown that in systems in
which two substrates share a phosphatase (see Fig.
2C ), one substrate saturating the phosphatase can
cause the other substrate to ultrasensitively respond
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to signals from the first kinase. This indicates a
novel potential for phosphatases to be involved in
network crosstalk.

Kinases are becoming increasingly popular drug
targets in the treatment of cancer and other dis-
eases [30]. We considered how such inhibitors might
influence the behavior of these various crosstalk ar-
chitectures, and found that these inhibitors can have
important consequences that would be difficult to
predict in the absence of a detailed understanding
of network topology and enzyme saturation.

Figure 2: Crosstalk schematic. (A) A pair of enzymes
(a kinase K and phosphatase P ) acting on N substrates;
we term this the 1K1P loop. (B) A kinase that has two
substrates, each with its own independent phosphatase
(P1 and P2); we term this the 1K2P loop. (C) Two in-
dependent kinases (K1 and K2) acting on two substrates
that share a single phosphatase P ; we term this the 2K1P
loop. (D) A section of the yeast Cdk1 signaling network,
including each of these three motifs [16,24–29]. Although
the interactions shown are specific to yeast, there are hu-
man homologs for each of the proteins listed. The full
network in this case contains a number of downstream
feedback mechanisms that are omitted for clarity. These
mechanisms may be abrogated by mutations so that the
local influence of competition can be studied experimen-
tally [16]. The competition between Wee1 and Cdc6 is
an example of the 1K1P loop, whereas Wee1 and Fin1
form a 1K2P loop, and Fin1 and Bni1 form a 2K1P loop.

Overall, our work demonstrates that enzymes
with multiple targets can couple signal responses,
and that systems considered in a cellular context
may exhibit behaviors vastly different from those
considered in isolated models. These results have im-
plications for how we understand the role of crosstalk
in signaling, and how we can potentially control the
propagation of the effects of enzymatic inhibitors
through highly connected networks.

RESULTS

1-Kinase/1-phosphatase loop with two sub-
strates

We first considered a signaling motif in which a ki-
nase (K) and phosphatase (P ) act on multiple sub-
strates, which we term the 1-kinase/1-phosphatase
(1K1P) loop. An example of this can be found in
yeast, where the proteins Wee1 and Cdc6 compete
for both the kinase Cdk1 and phosphatase PP2A
(Fig. 2D). In the simplest case, we included two sub-
strates of the kinase and phosphatase, S1 and S2,
each of which can exist in an unphosphorylated and
phosphorylated (e.g., S∗

1 ) form (see Fig. 2A, N = 2).
The set of enzymatic reactions is as follows:

S1 +K
k+,K,1−−−−⇀↽−−−−
k−,K,1

KS1
kcat,K,1−−−−−⇀ S∗

1 +K

S2 +K
k+,K,2−−−−⇀↽−−−−
k−,K,2

KS2
kcat,K,2−−−−−⇀ S∗

2 +K

S∗
1 + P

k+,P,1−−−−⇀↽−−−−
k−,P,1

PS∗
1

kcat,P,1−−−−−⇀ S1 + P

S∗
2 + P

k+,P,2−−−−⇀↽−−−−
k−,P,2

PS∗
2

kcat,P,2−−−−−⇀ S2 + P (2)

Each of the above reactions involves three elemen-
tary rates: the rate of complex formation (k+),
the rate of complex dissociation (k−), and the en-
zyme catalytic rate (kcat). From these rates we
can obtain the Michaelis constant for both enzymes:
Km,K,i = (k−,K,i + kcat,K,i)/k+,K,i and Km,P,i =
(k−,P,i +kcat,P,i)/k+,P,i. Additionally, we can define
the maximum velocity of each enzymatic reaction as
Vmax,K,i = [K]0kcat,K,i and Vmax,P,i = [P ]0kcat,P,i.
Each kinase and phosphatase molecule can only bind
and act on one substrate at any given moment, and
as such, S2 acts as a competitive inhibitor of the
kinase and phosphatase reactions with S1. This
results in a set of inhibitory constants, αK,1 =
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1 + [S2]/Km,K,2 and αP,1 = 1 + [S∗
2 ]/Km,P,2, that

capture the effects of S2 on the S1 kinase and phos-
phatase reactions, respectively. S1 inhibition of the
S2 reactions generates similar constants, αK,2 and
αP,2 (see the Supporting Material). The fact that
multiple targets constitute competitive inhibitors of
each other has been observed experimentally for
both kinases and phosphatases [16, 31, 32]. These
a terms are identical to what one would obtain for
a generic competitive inhibitor, α = 1 + [I]/KI [33].
Where the activity of a generic inhibitor against its
target enzyme depends solely on its concentration,
a competitive substrate will inhibit either the kinase
or the phosphatase based on the concentrations of
its unphosphorylated and phosphorylated forms, re-
spectively. Because these concentrations are con-
trolled by incoming signals, mutual inhibition has
the potential to couple substrate responses.

The chemical reactions in Eq. 2 can be read-
ily used to define a system of ODEs in which the
binding, dissociation, and catalysis steps are treated
explicitly (see the Supporting Material). We numer-
ically integrated these equations and calculated the
fraction S∗

1 ≡ [S∗
1 ]/[S1]0 at steady state at various

concentrations of S2 for a case in which S1 does not
saturate the enzymes. In this work, we consider a
case in which the saturation of all enzymes by any
given substrate is equal; we leave the case of dif-
ferential saturation among enzymes [12] to future
studies. The response of the system is controlled by
two r values, r1 and r2, which are the ratios of the
maximum velocities of the enzymes with respect to
either substrate. The results of these calculations
are summarized in Fig. 3A. As expected, when there
is no S2 present to compete with S1 for the enzymes,
S∗
1 increases as a rectangular hyperbola in r1. When
S2 saturates the enzymes, however, we find that S1

displays an ultrasensitive response in r1 in a fash-
ion similar to the ultrasensitive response obtained
by increasing S1 concentration in Fig. 1B.

These findings can be understood by treating the
1K1P loop analytically. In the limit in which the to-
tal concentration of the substrates is much larger
than the total concentration of either enzyme (i.e.,
[Si]0 ≈ [Si] + [S∗

1 ]), we can calculate the fraction S∗
1

as:

S∗
1 =

(r1 − 1)− (αK,1KK,1 + αP,1r1KP,1) +
√

((r1 − 1)− (αK,1KK,1 + r1αP,1KP,1))2 + 4(r1 − 1)r1αP,1KP,1

2(r1 − 1)
(3)

Figure 3: Results for the 1K1P loop. (A) The fraction
of phosphorylated S1 (z axis) as a function of r1 and
[S2]0. Note that for the purpose of display, we have set
r1 = r2 in this case. The total concentration of [S2] is
normalized by its Km (which is identical for both the ki-
nase and phosphatase) and is plotted on a log scale. (B)
The fraction of phosphorylated S1 as a function of r1 and
the number of additional substrates in the loop (N , see
Fig. 2A). All substrates are below saturating concentra-
tions ([Si]0 = 0.1 · Km). As in emphA, for the purpose
of display, the r and Km parameters have been set to
be equal for all substrates. Note that in both panels A
and B, the fraction S∗

1 responds to r1 with increasing
ultrasensitivity as the total saturation of the enzymes
(represented by [S2]0/Km or N , respectively) increases.
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which is identical to the original result of Goldbeter
and Koshland [17] except for the a inhibition terms
(see the Supporting Material for details about the
solution). Note that S∗

1 depends on [S1]0 through
the K terms as well as [S2] and [S∗

2 ] through the
α terms. The equation for S∗

2 is identical to Eq. 3
with a change of indices. This result is a general-
ization of previous findings on multiple substrates
in a Goldbeter-Koshland loop, allowing for both
kinase saturation and saturation of a shared phos-
phatase [16]. When [S1]0 � Km, as in Fig. 3A,
αK,2 ≈ 1 and αP,2 ≈ 1. In this case, S2 will be-
have as an isolated Goldbeter-Koshland loop and
as such will display an ultrasensitive response in r2
when [S2]0 � Km. Because incoming signals vary
r by changing the relative concentrations of active
enzymes, r1 ∝ r2 (for purposes of display in Fig.
3A, we assumed r1 = r2). When r2 < 1, S2 will
be largely unphosphorylated and will inhibit the ki-
nases action on S1, causing S1 to be primarily in
its unphosphorylated state. Similarly, when r2 > 1,
S2 will be mostly phosphorylated and will inhibit
the S1 dephosphorylation reaction by saturating the
phosphatase. In combination, this coupling trans-
fers the ultrasensitive response of S2 to the S1 curve.
We have proven mathematically that an increase in
S2 ultrasensitivity (i.e., increasing S2 concentration)
always increases the ultrasensitivity of the response
of S1 in r2 regardless of the values of the kinetic pa-
rameters (see the Supporting Material). The general
behavior observed in Fig. 3A is thus a qualitative
feature of all 1K1P loops.

It has been shown experimentally that the com-
petition between multiple phosphorylation sites on
the protein Wee1 contributes to the ultrasensitiv-
ity of Wee1’s response to incoming signals [16]. Al-
though multisite phosphorylation can have a number
of influences on such systems (e.g., by introducing
thresholds or bistability [2, 34, 35]), these findings
are consistent with the predictions made by Eq. 3.

1K1P with many substrates

We further developed the 1K1P loop to include
N > 2 substrates of the kinase and phosphatase (see
Fig. 2A). As described above, we numerically inte-
grated the resulting ODEs and calculated the frac-
tion S1 at steady state in a case in which we include
a varying number of substrates, each of which does
not saturate the enzymes. The results of these cal-

culations are summarized in Fig. 3B. As expected,
S∗
1 increases as a rectangular hyperbola in r1 in the

absence of other substrates. As new unsaturating
substrates are added to the system, we see that S∗

1

starts to show an ultrasensitive response in r1, even
though none of the substrates are at a concentra-
tionthat would produce such a response on their
own.

Once again, these results can be understood by
treating the loop analytically. In this case, the col-
lection of substrates act as competitive inhibitors of
the S1 loop. As such, the inhibitory constants must
now account for all competing substrates and can
be expressed as αK,1 = 1 +

∑N
i=2[Si]/Km,K,i and

αP,1 = 1 +
∑N

i=2[S∗
i ]/Km,P,i (see the Supporting

Material for the derivation).

Considering the case in which N > 2 reveals that
saturation of the enzymes can be the combined re-
sult of many substrates, rather than one substrate
saturating the enzymes on its own. When the ki-
nase is saturated by any subset of its targets, S1s
kinase reaction is inhibited, and a similar inhibition
occurs with the phosphatase. Thus, given enough
substrates, the entire system can show ultrasensi-
tivity in r1 even when none of the substrates in-
dividually saturate the enzymes. As mentioned in
the Introduction, kinases often have multiple tar-
gets within cells; for instance, Cdk1 has hundreds of
substrates in yeast [2,36,37], and the ErbB receptor
tyrosine kinases in humans have between 20 and 40
potential targets. In the latter case, the KD values
measured by Kaushansky et al. [38] indicate that the
1 mM Km value used in generating Fig. 3 is a rea-
sonable estimate. The collective-saturation mecha-
nism described above may thus represent a common
scenario for generating ultrasensitivity in substrate
response.

1-Kinase/2-phosphatase loop

Most of our empirical understanding of crosstalk
comes from studies that focused on the motif of a
kinase with more than one substrate [39]. Because
the specific phosphatases that act on any given set of
targets are often not known, it is not clear that all ki-
nase crosstalk will follow the 1K1P pattern discussed
above (Fig. 2A). For instance, Fin1 and Wee1 share
the same kinase (Cdk1) but have separate phos-
phatases (Cdc14 and PP2A, respectively; Fig. 2D).
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Also, because kinases often have a very large num-
ber of targets, systems in which substrates share the
same kinase but possess separate phosphatases may
be widespread [8, 9, 36, 37]. As such, we considered
the behavior of the 1-kinase/2-phosphatase (1K2P)
loop as diagramed in Fig. 2B. In this case, because
the phosphatases are independent, we can separate
the r parameters (i.e., r1 6∝ r2). At low substrate
concentrations, S1 responds hyperbolically in r1 and
is insensitive to r2 (Fig. 4A). When [S2]0 � Km and
r2 < 1, S1 phosphorylation is greatly reduced (Fig.
4B). In fact, one observes very little S1 phosphory-
lation until r2 > 1. In contrast to the 1K1P loop,
the response of S1 to r2 thus exhibits a threshold:
when r2 < 1, S1 essentially cannot respond to sig-
nals. At values of r2 > 1, however, S1 responds
hyperbolically to both r1 and r2.

The fraction S∗
1 for the 1K2P loop also follows

Eq. 3, but with αP,1 = 1 because the phosphatases
are independent. The presence of S2 in the system
thus generally decreases the phosphorylation level
of S1 (compare Fig. 4A and B). The thresholding
behavior seen in Fig. 4B occurs because the con-
centration of the inhibitor (i.e., unphosphorylated
S2) responds ultrasensitively to r2. If r2 < 1, the
inhibitor concentration is high, and no phosphoryla-
tion of S1 can take place. At r2 > 1, the inhibitor
is largely removed from the system, allowing S1 to
respond to incoming signals. However, it is only in
the limit r2 → ∞ (i.e., αK,1 → 1) that S1 will be-
have as an isolated futile cycle. As with the 1K1P
loop, we have shown mathematically that addition
of S2 always decreases S∗

1 regardless of the values
of the parameters in the limit S∗

1 � Km (see the
Supporting Material). This indicates that the gate-
keeper function played by S2 is a robust feature of
1K2P loops.

Kim and Ferrell [16] showed experimentally that
adding Fin1 and Cdc6 to Xenopus cell extracts in-
creases the active kinase concentration (i.e., r) re-
quired to induce a Wee1 response. Although the
experiment in this case involves both a 1K1P and a
1K2P loop (Fig. 2D), these findings are consistent
with our prediction that competitive substrates tend
to decrease the phosphorylation levels of other tar-
gets when the phosphatase is not shared.

Figure 4: (A) The fraction of phosphorylated S1 as
a function of r1 and r2 when [S2]0 � Km for both the
1K2P and 2K1P loops. In this case, [S1]0 = 0.1 · Km.
Note that r2 has little effect on the response of the S1

loop. (B) The fraction of phosphorylated S1 as a func-
tion of r1 and r2 for a 1K2P loop with [S2]0 = 20 ·Km.
As in A, S1 = 0.1 · Km. If S2 saturates the enzymes,
it becomes a gatekeeper; when r2 < 1 (i.e., when the
S2 loop is switched to the unphosphorylated state), the
S1 loop essentially cannot respond to incoming signals.
When r2 > 1, however, S∗

1 responds hyperbolically in
both r1 and r2. (C) The fraction of phosphorylated S1

as a function of r1 and r2 for a 2K1P loop. As in B,
[S1]0 = 0.1 ·Km and [S2]0 = 20 ·Km. Saturating concen-
trations of S2 generally increase phosphorylation in this
case. Note that even when r1 � 1, S1 shows an ultra-
sensitive response to r2 (and thus K2) despite receiving
only basal levels of signal from its own kinase. This indi-
cates the potential for significant phosphatase crosstalk
in signaling networks.
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2-Kinase/1-phosphatase loop

The human genome encodes 150 catalytically ac-
tive phosphatases and phosphatase domains, and al-
most 500 kinases [40,41]. As such, phosphatases are
generally considered promiscuous; although adaptor
proteins help increase phosphatase specificity, these
complexes still can target multiple substrates [10].
Because of this promiscuity, it is reasonable to imag-
ine that motifs in which two substrates share a sin-
gle phosphatase but are phosphorylated by indepen-
dent kinases are relatively common arrangements in
signaling networks. There are certainly examples
of such situations: for instance, Fin1 and Bni1 in
yeast share a phosphatase (Cdc14) but have differ-
ent kinases (Cdk1 and Fus3, respectively; Fig. 2D).
We used the 2-kinase/1-phosphatase (2K1P) loop as
modeled in Fig. 2C to characterize the behavior of
such systems. As with the 1K2P loop, the distinct
kinases in the 2K1P system allow the separation of
r parameters so that r1 6∝ r2.

At low substrate concentrations, this is essen-
tially the case. As anticipated, S1 responds hyper-
bolically in r1 and is insensitive to r2 (see Fig. 4A).
The situation is very different when [S2]0 � Km.
We see the expected hyperbolic S1 response in r1
when r2 is nearly zero (i.e., when the S2 loop has
not received an activation signal); however, as r2 in-
creases, the fraction of phosphorylated S1 molecules
increases until it reaches nearly one at r2 > 1 (Fig.
4C ). When r1 is close to zero, S1 responds ultra-
sensitively to r2. This indicates that a signal that
switches S2 to its phosphorylated state can cause a
similar switch in S1 even if very little signal is re-
ceived via K1.

As with the 1K1P loop, this behavior can be
explained in terms of the inhibition of one loop by
another. In this case, the fraction S∗

1 can be defined
as in Eq. 3 with αK,1 = 1 to account for the indepen-
dence of the kinases. Adding S2 to the system thus
generally increases phosphorylation of S1 (compare
Fig. 4A and C ). Because phosphorylated S2 acts
as a phosphatase inhibitor, an incoming signal that
increases r2 to values greater than one introduces
high concentrations of the inhibitor in a switch-like
manner, inducing a response in S1. We have shown
mathematically that this increase in phosphoryla-
tion in response to S2 competition will always occur
regardless of parameters in the limit [S1]0 � Km

(see the Supporting Material).

Phosphatase tunneling

In the models described above, we focused on
crosstalk occurring between substrates on the same
level of signaling; the only relationship between the
substrates is the shared enzymes. Signaling net-
works, however, often contain cascades in which a
set of proteins activate each other in sequence [42].
Although the sharing of phosphatases between dif-
ferent levels of a cascade has been documented [6],
the phosphatase architecture in these cases is often
poorly understood. Indeed, anonymous and inde-
pendent phosphatases are often added to mathemat-
ical models of MAPK cascades to fill in these gaps
[21, 43–45]. Given this ambiguity, we constructed
models of cascades in which each kinase has an inde-
pendent phosphatase, in addition to a case in which
a single phosphatase acts on all of the proteins in
the cascade (Fig. 5A and B).

Each type of cascade was modeled with depth
N = 2, 3, 4, or 5 substrates present in saturating
(10 ·Km) or unsaturating (0.1 ·Km) concentrations.
The input parameter r was defined as the ratio of the
maximum velocities of the initial kinase (K) to the
phosphatase acting on S1 (P1 or P for the indepen-
dent and shared cases, respectively), and the models
were analyzed for the fraction of the final substrate
phosphorylated (S∗

N ) at steady state.

For both classes of cascade, we found that the re-
sponse of the final substrate becomes exponentially
more sensitive to input signals with increasing cas-
cade depth. The N = 5 case generally reaches its
r1/2 (the r-value at which half of SN is phosphory-
lated) with 9 orders of magnitude less input than
N = 2 (see Fig. 5C ). This increase in sensitivity
is an expected outcome of amplification in signaling
cascades [17,46]. Additionally, models with a single,
shared phosphatase show a higher degree in input
sensitivity in r compared with models with indepen-
dent phosphatases, but only when the substrates are
present at saturating concentrations.

To quantify the changes in input sensitivity for
saturating conditions, we took the ratio of the r1/2-
values for the two types of cascade at a given value
of N (see Fig. 5D). In the most basic cascade, with
N = 2, the r1/2 for the single phosphatase model is
5 times less than that for the multiple phosphatase
model. This ratio increases and plateaus for cascades
with depth N ≥ 3; in these cases, the single phos-
phatase models require 13 times less signal. This oc-
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curs because the signal is able to tunnel through the
shared phosphatase when the substrates are at sat-
urating concentrations. Activation of the upstream

Figure 5: Influence of phosphatase tunneling on cas-
cade signals (A) A kinase cascade with N members. The
kinase K provides the input signal, and each substrate
Si acts as the kinase for substrate Si+1. In this model,
there are N independent phosphatases (Pi). This ex-
pands upon systems previously described by Goldbeter
and Koshland [17]. (B) A kinase cascade similar to that
in panel A, but with a single shared phosphatase P . (C)
Fractional phosphorylation of the final substrate in the
cascade as a function of r for cascades with two to five
substrates. In this case, r is defined as the Vmax of the
input kinase (K in A and B) divided by the Vmax of the
phosphatase for the first substrate in the cascade (P1

in A, and P in B). The dashed lines represent cascades
with N phosphatases and the solid lines represent cas-
cades with a single shared phosphatase. Note that the
responses of cascades become exponentially more sensi-
tive to r with increasing depth N . Cascades with a single
shared phosphatase are considerably more sensitive to
r compared with those with independent phosphatases.
(D) In this case, we define a parameter, r1/2, as the
value of r in panel C at which the response of a cascade
is half-maximal. For any given number of substrates, N ,
the r1/2 ratio is the r1/2 of the independent case divided
by the r1/2 of the shared case (i.e., the r1/2 of the dashed
curve in C divided by the r1/2 for the solid curve). For
N = 2, the independent case requires 5 times as much
input signal to achieve a half-maximal response; for N
= 3, 4, and 5, the independent case requires 13 times as
much input signal.

kinases not only activates the rest of the cascade but
also produces phosphorylated substrate molecules
that act as phosphatase inhibitors. This reduces the
effective concentration of free phosphatase available
for downstream substrates, amplifying the apparent
signal strength.

Kinase inhibitors

As mentioned above, there is a growing interest in
developing small molecules that target and inhibit
kinases as potential therapeutics for a variety of dis-
eases [30]. It is unclear, however, what kind of ef-
fects these inhibitors will have in loops with signifi-
cant kinase or phosphatase crosstalk; in these cases,
kinase inhibitors not only influence their targets’ ac-
tivity but also the concentration of other inhibitors
(namely, S2 and S∗

2 ) in the system. We considered
the impact of two separate types of inhibitors on the
loops described above. Type 1 inhibitors, which are
currently by far the most commonly used in prac-
tice [30], target the ATP-binding site of a specific
kinase and disrupt its activity toward all of its tar-
gets. Type 2 inhibitors, on the other hand, target
and disrupt a specific kinasetarget interaction, leav-
ing the kinase free to act on a subset of its other
targets. Although the latter is not currently com-
mon, peptide inhibitors have been successfully used
in this manner [32], and there is increasing interest
in developing the capacity to inhibit specific protein-
protein interactions within cells [47].

We modeled the potential effects of these in-
hibitors by including explicit inhibitor molecules in
our loops, with I1 and I2 representing type 1 and
type 2 inhibitors, respectively. We first considered a
1K1P loop with S2 at saturating concentrations and
in the active state (r1 = r2 = 1.5; see Fig. 2A). As
one would expect, adding I1 significantly decreases
S∗
1 , because a generic inhibitor for the kinase will

clearly reduce overall phosphorylation of all targets
(Fig. 6A). However, even an inhibitor that is specific
to S2 decreases the phosphorylation of S1 (Fig. 6A).
The specific inhibitor in this case decreases the con-
centration of S∗

2 , reducing competition for the phos-
phatase and thus decreasing S∗

1 .The effect of I2 is
not as dramatic as that of I1 for the 1K1P loop, but
this nonetheless represents a potentially unintended
consequence of a (putatively) specific inhibitor.

In the 1K2P case, we find exactly the opposite
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behavior: whereas I1 decreases S∗
1 as expected, I2

increases the phosphorylation of the first substrate
(Fig. 6B). This is because the inhibitor reduces S2

interactions with the kinase, alleviating competition.
In this case, the response of the system is perhaps
more intuitive: because S2 is a competitive inhibitor
of S1 phosphorylation, inhibiting its phosphoryla-
tion in a specific way increases the capacity of S1 to
respond to signals.

In the 2K1P loop, if the two types of inhibitors
are aimed at the second kinase (K2), they have the
same net effect. Because K2 cannot act on S1 in this
model, there is no difference between an inhibitor
that simply targets K2 and one that specifically tar-
gets the K2-S2 interaction. When the second loop
is activated by a signal and the first loop is not,
the K2 inhibitor completely abolishes S1 phospho-
rylation (Fig. 6C ). Although the source of this be-
havior is clear from Fig. 4C, the effect is nonethe-
less striking. In the absence of knowledge about the
shared phosphatase (or the phenomenology of the
2K1P loop), a response like the one shown in Fig.
4C might lead to the erroneous conclusion that K2

acts directly on S1, or that the inhibitor in this case
is nonspecific.

DISCUSSION

The 1K1P and 1K2P loops discussed above (Fig.
2A and B) represent two variations on the classic
crosstalk motif, i.e., a kinase that has multiple down-
stream targets in different pathways. In the tradi-
tional view, the coupling between the substrates in
these two loops is understood as simply arising from
the fact that they will all respond to some of the
same upstream signals [39]. Our work reveals that
a shared enzyme not only modifies each target but
also can strongly couple the response of one target
to that of another through competitive inhibition at
the shared enzyme. For instance, if the targets in
question share the same phosphatase, we find that
0th-order ultrasensitivity becomes transitive; all of
the targets in this case will respond in a switch-like
manner to incoming signals (Fig. 3A). We also find
that in situations where there are a large number of
substrates (Fig. 3B), the system can respond ultra-
sensitively even if none of the targets is at a high
enough concentration to elicit such a response on its
own (Fig. 3B). It has been shown that some kinases
do in fact act on many targets (e.g., Akt, the EGF

Figure 6: Effect of kinase inhibitors in the presence
of crosstalk. (A) A 1K1P loop with two substrates in
the presence of one of two kinase inhibitors: I1, which
prevents reactions with all targets of the kinase (red), or
I2, which specifically disrupts K-S2 interactions (blue).
We plot the fraction of phosphorylated S1 against the
ratio of [I1] or [I2] to [K]. In this case, [S1]0 = 0.1 ·Km,
[S2]0 = 20 · Km and r1 = r2 = 1.5. Note that using
either inhibitor causes a decrease in the fraction S∗

1 , al-
though the effect is less pronounced with the S2-specific
inhibitor. In the latter scenario, I2 reduces the [S∗

2 ],
which is itself a phosphatase inhibitor for S∗

1 . The net
effect of I2 is thus to decrease S1 phosphorylation. (B) A
1K2P loop with the same kinase inhibitors as in panel A.
The fraction of phosphorylated S1 is plotted against the
ratio of [I1] or [I2] to [K]. In this case, [S1]0 = 0.1 ·Km,
[S2]0 = 20 · Km, r1 = 0.5 and r2 = 1.5. Although the
general inhibitor still reduces S∗

1 , the specific inhibitor in-
creases S∗

1 . This is because decreasing the concentration
of S∗

2 reduces competition for the shared kinase. (C) A
2K1P loop in the presence of both I1 and I2. Note that
because the kinases are independent in this case, the
effects of both inhibitors are identical. The fraction of
phosphorylated S1 is plotted against the ratio of the con-
centrations of [I2] to [K]. In this case, [S1]0 = 0.1 ·Km,
[S2]0 = 20 ·Km, r1 = 0.01 and r2 = 1.5. Both inhibitors
decrease S∗

1 , as the reduction in phosphorylated S2 due
to the inhibitors reduces S∗

2 ’s inhibition of the S1 phos-
phatase reaction.
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receptors, and Cdk1 [8,9,36,37]), indicating that this
collective saturation may represent a common mech-
anism for inducing ultrasensitivity without having to
express any given protein target at saturating levels.
We find that the alternative variation on traditional
kinase crosstalk, the 1K2P loop (Fig. 2B), displays
a completely different set of behaviors from those
observed when the phosphatase is shared. In this
case, the saturating substrate acts as a type of gate-
keeper for the other substrates in the loop. Below
the signal threshold at which this saturating sub-
strate switches into the phosphorylated state, other
substrates will simply be unable to respond to in-
coming signals, whereas above this threshold the un-
saturating targets will respond in a hyperbolic man-
ner (Fig. 4B). Although direct experimental tests are
currently lacking, our predictions for both 1K1P and
1K2P loops are consistent with available data [16].
Overall, these findings indicate that when a particu-
lar kinase has multiple targets in multiple pathways,
it is difficult to reason in general about the behavior
of the system in the absence of detailed information
regarding phosphatase architecture and relative sat-
uration levels (Figs. 3 and 4).

To date, nearly all experimental characteriza-
tions of crosstalk have focused on kinases, and, to
our knowledge, the potential for phosphatases to
couple signaling responses on their own has not been
previously considered [39]. Our analysis of the 2K1P
loop (Fig. 2C ) demonstrates that such coupling is
readily achieved. Indeed, a shared phosphatase can
elicit an ultrasensitive response of a target to signals
from kinases that do not directly act on the tar-
get in question (Fig. 4C ). Furthermore, phosphatase
architecture plays a role in the sensitivity of a sig-
naling cascade. We found that cascades in which
every substrate shares a common phosphatase are
more responsive to input signals than cascades with
independent phosphatases when the substrates are
at saturating levels. Given that phosphatases are
generally considered more promiscuous than kinases,
this indicates that phosphatase crosstalk may be
widespread in biological networks. Because the spe-
cific phosphatases that act on many targets in signal-
ing networks are often not known [43–45], it is cur-
rently unclear to what extent phosphatase crosstalk
can influence global network behavior.

Given the widespread crosstalk present in mam-
malian signaling networks, our work highlights the
inherent difficulty of predicting a priori the effects

that kinase inhibitors will have on cells. These ef-
fects ultimately will depend not only on the kinase
connectivity of the network but also on the degree of
saturation in the targets and the phosphatase archi-
tecture. In many cases, both of these facts are un-
knowneven if the intracellular concentrations of the
target proteins are known, the Km-values for kinases
and (especially) phosphatases are not known, and for
many signaling pathways the relevant phosphatases
have not yet been identified. Understanding these
details will be a crucial component of any attempt
to rationally design a kinase inhibition strategy that
can elicit some desired effect on some set of targets
without inducing unintended decreases (or increases)
in the phosphorylation levels of other proteins in the
network (Fig. 6).

Ultimately, our work indicates that studies on
signaling and regulatory networks need to be increas-
ingly mindful of the highly interconnected and in-
terdependent structure of the networks themselves.
This is especially true of phosphatases. To un-
derstand the real consequences of rampant kinase
crosstalk, we clearly must obtain more reliable infor-
mation about which phosphatases act on which tar-
gets, what adaptor domains they employ, etc. The
findings described above also highlight the fact that
individual elements of signaling networks can exhibit
responses that are sensitive to the context in which
the element is found. Care must be taken to en-
sure that this dependence on network architecture
informs our interpretation and understanding of how
networks function and interact with each other.

MATERIALS AND METHODS

The behaviors of each model are described by sets
of ordinary differential equations (ODEs), which are
written explicitly for each system in section 1 of the
Supporting Material. The systems of ODEs were
numerically integrated using the CVODE package
from SUNDIALS [48]. We employed the dense lin-
ear solver with the backward differentiation formula
and a Newton iteration methodology available in
that package for all of the dynamics discussed in this
work. The values of the parameters used in each case
are included in the Supporting Material.

Steady-state measurements were obtained by al-
lowing the system to run until the level of each
species of the system stabilized. The actual times
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at which the measurements were made were cho-
sen heuristically by visual inspection of the trajec-
tories themselves. The surfaces obtained in Figs. 3
and 4 were confirmed analytically by solving for S∗

1

in the same manner as described by Goldbeter and
Koshland [17]. The analytical results are derived in
sections 2-4 of the Supporting Material.

SUPPORTING MATERIAL

Additional equations, results, and reference [49] are
available at http:// www.biophysj.org/biophysj/supp
lemental/S0006-3495(12)01109-5.

The authors thank Tom Kolokotrones, Van Sav-
age, Dan Yamins, Javier Apfeld, Catalina Romero,
Nick Stroustrup, and Deborah Marks for many help-
ful discussions. We thank Ryan Suderman, Dustin
Maurer, and Zaikun Xu for their comments on the
manuscript.
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